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Abstract 
In This paper, we have to convert hyper-geometric 
function into hyper-geometric function for power 
function. The applications of hyper-geometric function 
in a various field of physical and applied science are 
demonstrated, the success of the application of hyper-
geometric function in many areas of science and 
engineering. So, the function and its properties are 
useful for solving the problems in physics, biology 
and science. 
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Hyper-geometric function, Special functions, 
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I. Introduction 
 
Hyper-geometric function for power function is a 
particular case of hyper-geometric series as in 
[7]. A hyper-geometric series with  upper 
parameters and  lower 
parameters  is denoted and defined 
by  
 

 

 
 

Here are pochammer symbols. Where       

      

 

 

 

 

II. Definition  
 
Firstly, we give the definition of hyper-
geometric function for power function, 
introduced by the author 

  

 
Here are the Pochammer symbols 

and  If the parameter   is a negative 

integer and if no   is negative integer or zero 

then the series (2) terminates into polynomials. If    
  ;  j  is a negative integer or zero 

then the series (2) does not make  sense unless 
have is an  ; j  such that                     

 Using a ratio test, it 

is evident that the series (2) is convergent for 
every z, if ,it is convergent for, when 

 and divergent, when  If  
 and  then the series can 

converge in some case. We take, 

 
 We see that, when  the series is 
absolutely convergent for  if , 
convergent for   and 
divergent for   
 
Some special case of   function: 
 
A) i.e. no upper or lower parameter and 

.                                                  
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Hence   is reduced to the exponential 

series. 
 

B)  i.e. one upper parameter   and no lower 
parameter. 
 
      If is negative then the series terminates into 
polynomials and in the case, the 
condition, , the series convert into 
binomial series.  
 

 
 For  

       Thus, it is the binomial series as in [8]. 
 

 
III. Fractional Integral and Fractional 
Derivative of the Hyper-Geometric 
Function for Power Function 
 
Let us consider the fractional Riemann  
Liouville (R-L) integral operator, as in [7] (for 
lower limit  with respect to variable z) of 
the hyper-geometric function (2). 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 

 
(5) 

Fractional derivative of Hyper-geometric 
Function which indices  are increased to 

   
Analogously,             fractional derivative 
operator as in [7] of the Hyper-geometric 
Function with respect to. 

 
 

 

 
 

 

 

 

 
(6) 

We use the modified Beta-function 

 
 

 

 

 
 

Differentiation n times the term  and 
using again , equation (7) 
reduces to 
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gives a   hypergeometric 
function of hypergeometric function for Power 
function, which indices p, q are increased to 
(p+1),(q+1). 
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